Fusarium oxysporum mediates systems metabolic reprogramming of chickpea roots as revealed by a combination of proteomics and metabolomics

نویسندگان

  • Yashwant Kumar
  • Limin Zhang
  • Priyabrata Panigrahi
  • Bhushan B. Dholakia
  • Veena Dewangan
  • Sachin G. Chavan
  • Shrikant M. Kunjir
  • Xiangyu Wu
  • Ning Li
  • Pattuparambil R. Rajmohanan
  • Narendra Y. Kadoo
  • Ashok P. Giri
  • Huiru Tang
  • Vidya S. Gupta
چکیده

Molecular changes elicited by plants in response to fungal attack and how this affects plant-pathogen interaction, including susceptibility or resistance, remain elusive. We studied the dynamics in root metabolism during compatible and incompatible interactions between chickpea and Fusarium oxysporum f. sp. ciceri (Foc), using quantitative label-free proteomics and NMR-based metabolomics. Results demonstrated differential expression of proteins and metabolites upon Foc inoculations in the resistant plants compared with the susceptible ones. Additionally, expression analysis of candidate genes supported the proteomic and metabolic variations in the chickpea roots upon Foc inoculation. In particular, we found that the resistant plants revealed significant increase in the carbon and nitrogen metabolism; generation of reactive oxygen species (ROS), lignification and phytoalexins. The levels of some of the pathogenesis-related proteins were significantly higher upon Foc inoculation in the resistant plant. Interestingly, results also exhibited the crucial role of altered Yang cycle, which contributed in different methylation reactions and unfolded protein response in the chickpea roots against Foc. Overall, the observed modulations in the metabolic flux as outcome of several orchestrated molecular events are determinant of plant's role in chickpea-Foc interactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gene Expression Profiling during Wilting in Chickpea Caused by Fusarium oxysporum F. sp. Ciceri

Fusarium oxysporum f. sp. ciceri (Foc), one of the most important fungal pathogen of chickpea, is a constant threat to this crop plant. In the present study gene expression analysis of chickpea roots during Foc infection was performed using various approaches. cDNAs derived from total mRNA during infection process of susceptible (JG62) and resistant (Digvijay) cultivars, were amplified using ra...

متن کامل

In planta and soil quantification of Fusarium oxysporum f. sp. ciceris and evaluation of Fusarium wilt resistance in chickpea with a newly developed quantitative polymerase chain reaction assay.

Fusarium wilt of chickpea caused by Fusarium oxysporum f. sp. ciceris can be managed by risk assessment and use of resistant cultivars. A reliable method for the detection and quantification of F. oxysporum f. sp. ciceris in soil and chickpea tissues would contribute much to implementation of those disease management strategies. In this study, we developed a real-time quantitative polymerase ch...

متن کامل

PECTIC ENZYME PATTERNS OF FUSARIUM OXYSPORUM VIRULENT ISOLATES FROM CHICKPEA IN IRAN

The pectic enzymes produced in vitro by 8 isolates (5 Highly virulent and 3 Weakly virulent) of Fusarium oxysporum , were detected by spectrophotometry, and characterized by polyacrylamide gel electrophoresis with substrate-containing gels (zymogram). Analysis of the polygalacturonase (PG) isozyme banding patterns (zymogram) identified two distinct phenotypes among the isolates from chickpea (C...

متن کامل

Genetic structure of Fusarium oxysporum f. sp. ciceri populations from chickpea in Ilam province, Iran

Chickpea (Cicer arietinum L.) is one of the most important legume crops in Iran. Wilt disease caused by Fusarium oxysporum f. sp. ciceri, is the most important soil-borne disease of chickpea in the world. This disease caused high losses in different regions during recent years. Simple sequence repeat (SSR) were used to estimate genetic diversity in 114 of F. oxysporum isolates from six counties...

متن کامل

Quantitative and Microscopic Assessment of Compatible and Incompatible Interactions between Chickpea Cultivars and Fusarium oxysporum f. sp. ciceris Races

BACKGROUND Fusarium wilt caused by Fusarium oxysporum f. sp. ciceris, a main threat to global chickpea production, is managed mainly by resistant cultivars whose efficiency is curtailed by Fusarium oxysporum f. sp. ciceris races. METHODOLOGY We characterized compatible and incompatible interactions by assessing the spatial-temporal pattern of infection and colonization of chickpea cvs. P-2245...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2016